師資
基本信息
姓名: 李勤
職稱: 副研究員
研究領域: 量子場論的數(shù)學基礎
教育背景
2001-2005, 中國科學技術大學, 獲數(shù)學學士學位
2005-2011, 美國加州大學伯克利分校, 獲數(shù)學博士學位
工作經(jīng)歷
2011.9-2015.7 中國科學技術大學, 特任副教授
2013.6-2015.7 香港中文大學,博士后研究員
2015.7-2021.9 南方科技大學數(shù)學系,助理教授
2021.10-至今 深圳國際量子研究院,副研究員
論文及專利
(1). “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.
(2). “Quantization of Ka?hler manifolds”, Journal of Geometry and Physics, 163 (2021), 104143, 13 pp
(3). “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Proceedings 2018.
(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.
(5). “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017),575-639.
(6). “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.
(7). “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.
(8). “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013
(9). “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and Mathematical Physics, available at arXiv:2001.10869.
(10). “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.